skip to main content


Search for: All records

Creators/Authors contains: "Luisi, Matteo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The ideal spectral averaging method depends on one’s science goals and the available information about one’s data. Including low-quality data in the average can decrease the signal-to-noise ratio (S/N), which may necessitate an optimization method or a consideration of different weighting schemes. Here, we explore a variety of spectral averaging methods. We investigate the use of three weighting schemes during averaging: weighting by the signal divided by the variance (“intensity-noise weighting”), weighting by the inverse of the variance (“noise weighting”), and uniform weighting. Whereas for intensity-noise weighting the S/N is maximized when all spectra are averaged, for noise and uniform weighting we find that averaging the 35%–45% of spectra with the highest S/N results in the highest S/N average spectrum. With this intensity cutoff, the average spectrum with noise or uniform weighting has ∼95% of the intensity of the spectrum created from intensity-noise weighting. We apply our spectral averaging methods to GBT Diffuse Ionized Gas hydrogen radio recombination line data to determine the ionic abundance ratio,y+, and discuss future applications of the methodology.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Abstract

    The Green Bank Telescope Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission from 4 to 8 GHz. The nominal survey zone is 32.°3 >> −5°, ∣b∣ < 0.°5. Here, we analyze GDIGS Hnαionized gas emission toward discrete sources. Using GDIGS data, we identify the velocity of 35 Hiiregions that have multiple detected RRL velocity components. We identify and characterize RRL emission from 88 Hiiregions that previously lacked measured ionized gas velocities. We also identify and characterize RRL emission from eight locations that appear to be previously unidentified Hiiregions and 30 locations of RRL emission that do not appear to be Hiiregions based on their lack of mid-infrared emission. This latter group may be a compact component of the Galactic Diffuse Ionized Gas. There are an additional 10 discrete sources that have anomalously high RRL velocities for their locations in the Galactic plane. We compare these objects’ RRL data to13CO, Hi,and mid-infrared data, and find that these sources do not have the expected 24μm emission characteristic of Hiiregions. Based on this comparison we do not think these objects are Hiiregions, but we are unable to classify them as a known type of object.

     
    more » « less
  3. Kinematic distance determinations are complicated by a kinematic distance ambiguity (KDA) within the Solar orbit. For an axisymmetric Galactic rotation model, two distances, a "near" and "far" distance, have the same radial velocity. Formaldehyde (H2CO) absorption measurements have been used to resolve the KDA toward Galactic HII regions. This method relies on the detection of H2CO absorption against the broadband radio continuum emission from HII regions. H2CO absorption at velocities between the HII region velocity and the maximum velocity along the line of sight (the tangent point velocity) implies that the HII region lies at the far kinematic distance whereas a lack of absorption implies that it lies at the near kinematic distance. The reliability of KDA resolutions using H2CO is unclear, however, as disagreements between distances derived using H2CO absorption and those derived using other methods are common. Here we use new H2CO and radio recombination line data from the Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) to test whether H2CO absorption measurements can accurately resolve the KDA for 44 Galactic HII regions that have known distances from maser parallax measurements. For each of the 44 HII regions we determine whether the parallax distance is consistent with either the near or the far kinematic distance. We find that the Galactic distribution of H2CO is too sparse to reliably determine whether an HII region is at its near kinematic distance. The H2CO method also incorrectly resolves the KDA for 80% of HII regions that it places at the far kinematic distance; in such cases H2CO absorption may be caused by other sources of radio continuum emission (possibly the CMB, diffuse free-free, or synchrotron). Our results indicate that the H2CO method is unsuitable to resolve the KDA toward Galactic HII regions. 
    more » « less
  4. null (Ed.)
  5. Plasma of temperature 10,000K is created by OB stars and takes the form of discrete HII regions and diffuse gas. It is the key to determining the impact of massive stars on the interstellar medium (ISM) and the lifecycle of ISM gas. We review research this plasma, highlight outstanding questions, and provide recommendations for future facilities. 
    more » « less